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The role of wave propagation in hydrocyclone operations II:
Wave propagation in the air—water interface of a conical hydrocyclone

E. Ovalle, F. Concha

Department of Metallurgical Engineering, University of ConcepciConcepah, Chile

Abstract

The air-core plays an important role in the operation of a conical hydrocyclone. In the apex, the air-core increases in diameter with the
possibility of reaching a size close to the apex diameter. In this case, roping may be induced. There is a range of values for the apex to
vortex ratio where roping is possible. Using some simple physical models, this work shows that perturbations propagating through the air-core
interface are amplified in the direction of the apex and may be responsible for the fluctuations of the underflow that are characteristic of roping.
© 2005 Published by Elsevier B.V.
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1. Introduction degradation in the classification quali§]. We think that
perturbations induced by wave propagation in the flow may

In previous work[10], we discussed the flow pattern in  also influence the efficiency.

a conical hydrocyclone and obtained a numerical solution In this paper, the problem of generation and propagation

of the Navier—Stokes equation by the finite element method of waves in a hydrocyclone is addressed. Through a hydraulic

(FEM). In the present work, we focus on the existence and analogy, the study starts modelling the flow inside a conical

propagation of wave motion inside a conical hydrocyclone. hydrocyclone, where the centrifugal force is replaced by a
From a practical point of view, the principal interests are gravitational force. Inthis context, itis possible to study some

the efficiency of the classification process and in the oper- particular features of the flow such as the form adopted by the

ational stability of the hydrocyclone performance. The effi- free surface, the propagation of superficial waves through the

ciency of classification is characterized by the sharpness ofair—water interface, and the effect of the waves on the opera-

the separation, which can be visualized by the shape of thetion of a conical hydrocyclone. Next, we propose a possible

classification curve. In a numerical hydrocyclone model, the mechanism for the generation of wave motions in a region

classification curve may be obtained by introducing particles adjacent to the air-core of a hydrocyclone.

in the flow field and following the trajectories. These tra-

jectories are sensitive to the perturbations introduced by the

instabilities of flow, and the presence of turbulence. In the 2. Form of the free surface

presence of these phenomena, the classification curve is less

sharp. The form of the free surface observed in a laboratory hy-
One feature that complicates the study of the flow in a drocyclone is similar to that shown iRig. 7. The surface
conical hydrocyclone, is the presence of an air-¢aré,6]. is horizontal and flat (cylindrical in the actual case) and de-

Electrical resistance tomography studies have shown that theformed in the outlet regions. As we will show, these defor-
air-core is not statifl 2], and some experimental observations mations are evidence for the existence of wave-like motions
show that the instabilities of the air-core could produce a in the region near to the air-core.
Consider, for example, the flow in a channel with a con-
stantdeptlid [11] (seeFig. 1), where the flow has an upstream
* Corresponding author. constant velocityJ. If, in a certain region, a ramp is present
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Fig. 1. Free-surface deformation in a channel.

in the formy =Y(X), the height of the free surface will change and the perturbations originated at the floor are reflected up-
fromy=H to y(x) =H — d(X). The conservation of mass de- stream, which are favorable conditions for the formation of

mands that: waves in the flow.
In a conical hydrocyclone, the flow has a tangential com-
UH = u(x)[H — d(x) = Y(x)] 1) ponentthatis the same order of magnitude as the axial compo-

On the other hand. momentum is conserved in the flow and nent except at the outlet region where the axial component is

may be expressed by the Bernoulli equation over a free Sur_mcreased at the expense of_ the tangential compon_ent. The_re-
face streamlind: fore, based on the observations of the free surface in the adja-

cent outlet regions, we assume thasjde the hydrocyclone

1, p 1, p the flow is in a subcritical state ands a consequencthis
U HeH+ o 2" +8(H —d) + P @) condition is favorable for the existence of undulatory motions
o ] ] in the fluid
Eliminatingu(x) from the above equations results in:
2752
(HijdH_Y)z =U%+2gd ) 3. The hydraulic model
Sinced « H, the LHS of Eq(3) can be expanded in a rapidly The work of Escudier et g]8], who used a hydraulic anal-
convergent series. Truncating this series yields: ogy to study the change between subcritical and supercritical
v regimes of a swirly flow, inspired us to study the propaga-
d(x) = # (4) tion of waves in the air-core of a hydrocyclone in a similar
Fe-1 manner. The hydraulic model of the hydrocyclone consists
whereF is the Froude number defined by: of a launder with a ramp as shownFig. 2 The water enters
through the bottom at the left side and overflows at the left
F= v (5) and right of the upper part of the model.
VeH The model is a bi-dimensional, Cartesian representation

of a conical hydrocyclone geometry, as is showRiigp 2 In
this representation, the centrifugal force is replaced by gravi-
éational forcepg, in the vertical direction. The flow is mod-
elled as inviscid and irrotational and the velocity is expressed
in terms of a potential velocity = V¢. This approach has
the following advantages: the boundary conditions can be
chosen with a clear physical sense, in contrast with other for-
mulations (for example, the stream-vorticity scheme). The
second reason for this formulation is because the treatment
of the undulatory phenomena is more direct.

In the model, the flow obeys: the continuity equation
V24 = 0 and Bernoulli's equation of motion:

The flow is subcritical when F <1 andsupercritical when
F>1. In the first cased(x) has the same sign a§x) and

the free surface decreases its level downstream. The invers
occurs wher-> 1. This change of regime, associated with
the variation of the Froude number, determines how a per-
turbation is propagated through the flow. As is known in the
shallow-water theory, the wave velocity of propagatwis
proportional to,/gH. Therefore, the Froude number, writ-
ten asF = % has a physical meaning similar to the Mach
number in compressible flows. If the flow is supercritical, the
velocity of the fluid is greater than the transmission of infor-
mation about a change in the floor level; thus, the perturbation
upstream has no effect on the flow downstream. In the oppo- ap 1 ) p

site case, the information may advance faster than the flow, B(t) = 7 TVl eyt P (6)

wherepis the pressure field(t) an arbitrary function of time,

1 In the hydrocyclone case, a centrifugal fomé*rz must be consideredin £ th? Constam liquid den.Sit)_/ argds th? gravitational accel-
Eq.(2). eration. Since the potentid| is only unique up to a constant,
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Fig. 2. Hydraulic analogy of a conical hydrocyclone.

Fig. 3. Simplified hydraulic model of a hydrocyclone.

we can takeB(t) = 0. The last equation can be considered a
definition for the pressure field in the stationary case. It con-
tains two terms: a hydrostatic forcegy, and the dynamical
component given by the velocity fie%j V2.

The simplified hydraulic model is shown Fig. 3. The
domain of the problem is denoted 83 and the boundaries
by I={Ir1uUr,Ursury}, wherels is an inlet region,

I'> outlet regions "3 the walls andl"y is the free surface.
In the model, we use Cartesian coordinatesyj and the
two-dimensional velocity will be given by = (i, v).

The problem can now be expressed in the following form:
over £2, the Laplace equatioiV?¢p = 0 needs to be sat-
isfied. At I'1, the flow is fixed through the inlet velocity
vin = 0¢/0n, the normal component @f. At the outlet re-
gions, we fixed the values @f to arbitrary constant values
C1 andC,.? Since the flow has no viscosity, we set the normal
component of the velocity field equal to zero at the walls. Fi-
nally, we impose a particular differential equation at the free
surfacel 4, as will be shown.

At this free surface, it is necessary to impose two comple-
mentary conditions. Thiinematical conditiorxpresses the
fact that the position of the free surface is coincident with the
border of the fluid, every time and everywhere. Experimental

observations have shown that if a fluid particle is located over 72 = 11 +
the free surface at a given time, it remains there forever. If the

interface position is described by a functipnan(x, t), where
y is the position of a particle of fluid angl represents the

mathematically byf(x, y, t) =y — n(x, t)=0. This condition
can be rewritten in terms of a material derivativd ab:

O

whereu and v are the horizontal and vertical components
of v. From the definition of, the last expression adopts the
form:

an
ot

oo _ o _
ax ox Ay

®)

The second condition idynamicaland considers the pres-
sure distribution over the free surface. If the properties of the
water—air interface are neglectéthe pressure can be con-
sidered constant over the free surface, and its value fixed to
an arbitrary constanthg, in the Bernoulli Eq(6). If n(x, t)
denotes the height of the free surface with respect to an ar-
bitrary level of reference=0, Bernoulli's equation can be
rewritten for the free surface in terms of the deformatipn,
as:

¢
o 9)
where we have chosexm =0 for convenience. The problem
can be set formally as follows: consider a dom&hnaving

a free surface at the boundafy. Then, ing2, the velocity
potential satisfies the Laplace equatighy = O and, over

I, the two Eqgs(2) and(8). In the literature, a number of nu-
merical methods exist to solve these equations. Nevertheless,
the problem can be solved using a simple iterative method.
Since the pressure is the same at all points on the free surface,
we can choose a reference pdttthere, and on the free sur-
face, use the Bernoulli E¢6) to calculate the deformation

on both sides oP;. Then, for a neighboring poir, the

new deformationyy, is:

1
+ §|V¢|2+gn =0

1
Z—g(v% —V3) (10)

With this simple procedure, we can calculate fiven of the
free surface but not its absolytesition To obtain the posi-

position of the free surface, then the restriction is expressedtion, we need to minimize a functional constructed in terms

2 The casefC; # Cy, can be considered as an external gradient oh-

of the total mechanical energy of the flow, simply choosing
the case when the total pressure drop is an extremum. The

posed on the main flow in the horizontal direction. In the real case, when the
hydrocyclone operate in a vertical position, these constants can be used to 3 We will not consider the effect of superficial stress, i.e., due to chemical
represent the contribution of the gravity field in the vertical direction. additives to the fluid.
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justification for using the method is that, in nature, physical nically is difficult by the evaluation of the = dv, /dr term.
processes tend to utilize a minimum amount of energy. However, this is technically difficult and the results are highly
We developed a FEM code in MATLAB to solve the equa- variable. It is our opinion that despite the theoretical attrac-
tions of the hydraulic model and the commercial code (FLU- tiveness and sophistication of the theory, its application in the
ENT) to obtain the form of the free surface in a hydrocyclone. inverse sense (the calculation of the diameter from the known
In these simulations, we used cylindrical coordinates and the pressure) is not necessarily valid. It can be concluded that the
problem was defined as axisymmetric. To obtain good re- form of the free surface is determined mainly by global prop-
sults, it was necessary to use a simple RNG model in the firsterties of the geometry and flow and only in a minor extent by
steps and a second-order differential turbulence model after-local properties of the surface, such as the surface tension.
wards. A great advantage in using FLUENT in Unix was the
possibility to use a mesh generatprgFC) in an iterative 3.1. Waves
or batch mode that can be set through a series of commands
written in a text (Ascii) file. In this way, the deformation of The second problem to consider is the propagation char-
the free surface was calculated, correcting the form to obtain acteristics of waves at the free surface. As was mentioned
an uniform pressure distribution. Example results doing the before, the form of the free surface in the hydrocyclone sup-
previous calculation steps are showrHg. 4. ports the existence of wave-like motions in its interior. The
Some authors have suggested that the form of the air-first task is to incorporate an expression for the normal com-
core can be determined by some mechanical characteristicjponent of the velocity at the free surface in the kinematical
ofthe free surface through a dynamical restricf@]. They boundary condition.
say that ifT; is the normal (radial) stress inside a fluid, the The unit normah of the free surfacfx, y, t) =0 is given
radius of the air-coretac, can be calculated by using the by the normalized gradient ¢f
Young-Laplace equation: o g—fi N {ij
o n—= _ X ay
[Trr]r=ruc = _E (11) V| (g>2+ (i>2
ay

(14)
. . . . . 8—x
where [Ty ]r =r = Tir lwater— Tir lair @ando is the liquid—air in- o .
terface tension. The radial stresses in a viscous liquid with Now, itis possible to calculate the normal component of the
viscosityu, can be estimated using a first-order expansion of Velocity field in the direction ofi:

r in the form: af of 5
¢ Uge T V% ~%
T,,=_p+2M% (12) %=n~v¢= o\ 2 of 2 o\ 2 or\ 2
4 (&) + (&) V&) + &)

If « represents the radial gradient of the radial velogityeq. (15)
(12) can be written a3y, = —p+ 2 uw. From(11) and(12),
the diameter of the air-core is:

20 3£ . % % on

or in terms ofy andx:

d, cosp) (16)

- Ap — 2ua

This theory can be applied in an inverse sense. The cal-
culations show that using a simple hydraulic model or a where we have replaceth/dx by tan@) which represents
commercial code to solve the full Navier—Stokes equations, the slope of the surface element respect to the horizontal di-
itis possible obtain the right form and position of the free sur- rection. Another form to obtaifl6) is as follows: define
face, without any use of additional physicochemical proper- s andn as the unit vectors oriented in the tangential and
ties of the interface. The Young—Laplace equation can be usednormal direction relative to the free surface. In term® of

for calculate the pressure jump in the interface, although tech-we haves= cos@)i + sin@)j andn = —sin()i + cosp)j. Then,

@%%ﬁ‘? 1T
—— NN NN <

S
—

Fig. 4. Variations in free surface height.
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(0¢/0n) = n - V¢ = —sinP)(d¢/dx) + cosP)(d¢p/dy). By
(8), (0n/0t) + (d¢p/3x) tan@) — (d¢/dy) = 0. From the two
last expressions, we havép(/on) = (dn/dr) cosp).

Now, we can linearize the kinematical and dynamical con-
ditions if we neglect the terms proportional I84|% and
%g—z Then, Egs(8) and(9), are replaced by:

¢

hast =0 17
o Ten a7
n_9%_, (18)
ot dy

Now, we can combine the above equations to obtain a hyper-

bolic differential equation having the form of a wave equa-
tion:
¥ 3
Wf + ga—(p\/l—i-tanz(@ =0
n

If 6 is small, then tam) ~ 0 andd¢/on ~ d¢/dy. Further-
more, if we impose a periodic perturbatig(x, y, t) = ¢o(X,

y) € over the free surface, we obtain the following equation
for ¢:

(19)

ap  w?
om g ¢
Eqg. (20) is a Robin boundary condition. When it is applied
over the free surfacé’s, the dynamics of the free surface
are transmitted to the interig?, where the Laplace equation
V24 = 0 is satisfied.

For a better illustration, consider the case of stationary
waves in the formp(x, y, t) = f(x)g(y) €“t. For this selection,

(20)
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ferential equation fof(x) has the form of an harmonic oscil-
lator, wherek represents the spatial frequency 2z/A for a
given wavelength.. Then,f(x) can be expressed in terms of
the sinusoidal functiod - sin(kx + «), with « being a phase
constant. In a similar forng(y) can be expressed in terms of
the hyperbolic equatioAe?y + Be . If 2 is bounded in the
vertical direction by the floor placed at —h(x) (seeFig. 5),
and the reference free surface isyir 0, theng(y) adopts
the form cosh(y +h)]. The more general solution is given

by:

o(x, y, 1) = 2Ae ¥ sin(kx + o) coshk(y + h)) € (22)

But ¢ needs to satisfie@@0), which fixes a relation be-
tween the temporal behavior, given bt), and the spatial
behavior, given b¥(x), in the form of adispersion relation

w(k) = /g - k - tanhh) (23)

The physical amplitude of the oscillation can be obtained
from the relatiord¢/dy = an/ot given by Eq(16)for 6 « 1.

If we integratede/dy with respect to the time, and then re-
place the imaginary factori by e (/2), we obtain the so-
lution for n(x, y, t):

k 4 .
n(x, y, 1) = 2A— e =2 sinh(y + b)) dE) (24)
w

In the case of travelling waves, e.g(x, y, t) = go(y) & kD,

by a similar procedure, we obtain the solution:
k .

n(x, y, 1) = 2A—e ¥ sinh(y + h)) cosx — wr) (25)
w

Fig. 6shows some isobaric lines resulting from a calculation

the Laplace equation imposes:

f//

of the temporal evolution of the waves imposed over the free
surface. The superficial waves are propagated inside the do-

7

8

—+==0 (21) main and their amplitude decreases. It is interesting to note
f § the jumps observed where the depth changes abruptly, as in
at each point irf2. the neighborhood of the vortex finder region.
This equation is satisfied only iff"/f = —g¢g"/g = In certain conditions, the amplitude of the wave can grow

constant. If the constant is negative, sal?, then the dif- in regions where the depth is decreasing, as is seen in the case

Fig. 5. Free surface.
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Fig. 6. Isobaric lines in the hydraulic model. In the upper figure, a temporal evolution (in vertical axis) of the free surface is shown.

of tsunamis or in the hydrocyclone apex. We suggest that in asurface at the outlet regions. With these arguments, we con-
real hydrocyclone, the intermittent suppression of flow at the clude that the hydraulic model can represent the principal
apex can be due in part to the propagation and amplification physical features of a real hydrocyclone.
of waves through the air-core. A problem that is difficult to visualize in a real hydrocy-
clone is the influence of the wave motion when the regime
changes from spray to roping at the underflow zone of an con-
4. Some measurements on the hydraulic model ical hydrocyclone. There is experimental evidejjehat the
flow regimes at the apex region depend on the ratio of apex
We were interested in validating the representation of hy- and vortex diametefS,/Do. WhenDy/D, < 0.35, the regime
drocyclone physics by a simple two-dimensional hydraulic is always roping, and iDy/Dy > 0.5, the regime is always
model. Toward this end, we constructed a physical model spray. At intermediate values between 0.35 and 0.5, the be-
in the laboratory using translucent perspex. The experimen-havior cannot be predicted by diameter ratio alone.
tal setup is shown irFig. 7. The size of the model was Using the hydraulic model as a physical analogy, we con-
90cmx 11cmx 2cm. Water was fed through a pipe con- structed a functional dependence between the r&igQ,
nected at the bottom of the vortex zone. At both outlets (left: andD/Do, using the virtual radiD, andDy shown inFig. 7
overflow, and right: underflow), the flow rate was measured. (distance between the free surface level and a reference and
Making measurements of the water heights and calculat- arbitrary label equivalent to the symmetry axis in a real hy-
ing the mean velocity at the outlet regions, it was possible drocyclone). The result is shownTable 1 We observe that
to estimate the total pressure drop in the equipment. If a the underflow is suppressed /D, between 0.42 and 0.3.
pressure—flow curve is constructed, it obeys a relationship inIf we induce a wave-like motion in the hydraulic model, for
the formQ ~ P12, similar to the behavior of a real hydrocy-  example, with the feed flow in a pulsating form, we obtain the
clone. Furthermore, when the equipment is fed with different response indicated by the symbol (*)Table 1, suppressing
feed rates, different forms of free surface were obtained, butthe underflow at an earli€d,/Dy.
all showed characteristics similar to those observed inthe nu- ~ To confirm our conclusions, we obtained a numerical so-
merical simulation of a real hydrocyclone. The flow showed lution for the hydrocyclone working only with water, using
a prominence at the central region and a depletion of the freethe commercial package FLUENT with a structured grid. The

D, D,
Y A
AN /N
Vessel Vessel
-']‘ Feed

Fig. 7. Experimental setup of the hydraulic model.
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Table 1 Table 2

ExperimentalQ,/Qo =f (Dy/Dy) relation NumericalQ,/Qo =f(Dy/Do) relation

Du/Do Qu/Qo 0./09; Du/Do Qu/Qo 0,/09;
0.1750 0.000 0.000 0.3077 0.000 0.000
0.2750 0.044 0.000 0.4211 0.122 0.111
0.5750 0.349 0.183 0.6154 0.289 0.289
0.7625 0.850 0.589

1.0000 2.404 2.404

transition between spray and roping occurs at lesser values
of Dy/De. In other words, oscillations in discharge cause an
meshes are shown Fig. 8. For a given geometry, we do not  increase in the probability of the transition from spray to rop-
know a priori the form of the free surface and the split ra- ing.

tio. The form and position of free surface are found (as was

discussed before) and, for each case, we calculated a set of

different values of split ratio. Finally, we chose the config- 5. A proposal for the origin of the waves

uration that produced the minimum amount of mechanical
energy. In this section, we explore a possible mechanism for the

To be strict, we need to compare the static solution ob- generation of wave-like motions in the region adjacent to the
tained with a fixed free surface, with a time-dependent solu- air-core in a conical hydrocyclone. The predominant force in
tion that considers the fluctuation of the free surface in time. a swirling flow is the centrifugal force. This assumes the role
In our case, however, we compared two static cases, one withof a restoration force when a disturbance alters the stream-
and without free surface deformation. In both cases, we ob-lines and (as in the case of a perturbation over a tank) can, in
tained the same result as is showrTable 2 The behavior some circumstances, manifest itself through wave-like mo-
is similar to the measurements on the hydraulic model. For tion. Since this kind of force appears with a change of refer-
small ratios ofD,/Do, there is a limit when the underflow ence frame, it is an inertial force.
disappears. In the intermediate case, given a EatiD,, the In a conical hydrocyclone, the tangential velocity has the
underflow is less when there are wave-like movements at theform of a forced vortex in the inner region and a free vortex
free surface. This means that when there are oscillations, than the outer region. At the inner region, the rotation is similar

Numerical Q,/Q  =f(D,/D,) relation

0.1 -0.1
of o
01} : 0.1} :
0.2} 0.2+ i
i
1 }
¥ I
! 7
0.3— FA A S 03_ A S
A 0 A A 7 T A A A A A A
777 A A A I A A A A A
A A A A A A 0 A A A
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Fig. 8. Meshes used in FLUENT on a hydrocyclone.
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to that of a rigid body (Taylor—-Proudman theorem), and the

fluid acquires some elastic properties that can sustain waves%, pt =

Our attention will be focused on the annular section sur-
rounding the air-core, as is shownkig. 9. Assume that the
fluid is rotating with a constant angular veloc® around
thez-axis. If the equations of motion are expressed in a refer-
ence frame rotating with the fluid, we have the two following
equations:

V.v=0 (26)
and
o 1_,
5-|—§Vu F(VXV)XV+22XxV+Rx(RxT)
1
= —-VP—-1vwWx(VxV)+F (27)
0

wherep(V x V) x v is the centrifugal force2o x v is the
Coriolis force and- is the external force. F is conservative,

it can be written in terms of an arbitrary potential function
A, and in the case of a gravitational force, we h&ve
—V(gz). Grouping all gradients in one term and defining the
newpressure pn the form:

1
p=P+ng—§p(ﬁxr)-(ﬂxr) (28)
Eq. (27) adopts the form:
av 1
5+(V VIVA422 x v=— —Vp — vV x (V x V) (29)
yol

If L, 2 and U are characteristics dimensions of lon-
gitude, angular velocity and velocity, the importance of
the centrifugal and Coriolis forces in a hydrocyclone can
be estimated if the momentum equation is written in

T

Fig. 9. Zone for generation of inertial waves in the hydrocyclon.
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terms of the dimensionless variablés= f, f =1Q,v*

pg% andV* = LV. The continuity equation does

not change in form, but the momentum equation changes to:
ov*
or*

= —V*p" — ExV* x (V¥ x v¥)

+ Ro(V* - V¥V* + 2k x v*

(30)

whereRy is the Rossby number afig is the Ekman number
defined by:

V- V)V ULy U
Ry — | PV VIV _p - (31)
202 x V p2U 2L
Vv L=2U
Ep = |- _H -0 (32)
2082 x V p2U QL2

These numbers quantify the relative importance of the con-
vective and viscous terms with respect to the Coriolis force.
If we assume zero viscosity, the Ekman number is zero. Fur-
thermore, if the velocityJ of a perturbation is much smaller
than the rotational velocity of the fluid, the Rossby number
is also small. These cases are applicable to the hydrocyclone
of course. In the limit case wheRy =0, the pressure force is
balanced by the Coriolis force. The flow is termed geostrophic
(in the future, we will drop the * in the dimensionless vari-
ables):

2k xv=-Vp (33)

In this case, the movement is induced by a pressure field per-
pendicular to the path of the fluid particles, which is similar
to that observed in atmospheric tornados. Applying the curl
to (33) results in:

k-vw=0 (34)

where we used the vectorial ident®yx (k x v) = KV - v —

k - Vv. This result shows that the gradient of the velocity
field does not change in the direction of the rotation axis,
and the flow becomes rigid in thedirection of the rotation
(Taylor—Proudman theorem). In particular, if a perturbation
isinduced in some place, it will propagate axially through the
rigid column surrounding the air-core. In the nonstationary
case withEx =Ry =0, the linear equation:

%—FZRXV:—V]) (35)
has a solution of the form:

v(x, 1) = V(x) € (36)
p(x, 1) = P(x) €’ (37)

wherew is the angular frequency of a perturbation imposed

on the flow. The equations of motion are now:
V.-V=0 (38)

ioV +2k xV =—VP (39)
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The last equation couples the velocity and pressure fields. ItUsing Eq(44)as aboundary condition, the termin the surface
is convenient to express both equations in terms of only the integral can be transformed to:

pressure variable. Applying the curl to E§9), and using the

vectorial identityV x (A xB)=B-VA—-A.VB+AV.

B — BV - A, we obtain:
2i

VxV=-—2k.vv (40)
w

If we apply thek component of the gradienﬁ( V) to (39)

equation, we have:

R-vW ="k .vvp (41)

w
Combining Eqs(40) and(41) and taking the divergence of
(39), we obtain the Poincare equation:
4 2
2 _

VP—E(k-V)P_O (42)

Now, it is necessary to convert the boundary conditibn

n = 0 into an equation in terms &. Projecting(39) on the

vectorn x k, and using the vectorial identitya(x b) - (c x
d)=(a-c)(b-d)— (a-d)(b-c), we have:

~ 2i ~n ~
(iR x V) —2V) -n+ Zn.Kk- VP = —(nx k) - VP
w

(43)
and replacing x V from (39)in (43), we obtain:
4 a
iw? <w—)v-n =w’n-VP—4(n-k) k- VP)
w
—2iw(k -n)- VP (44)

Then, the boundary conditiovi - n = 0 expressed in terms
of P is given by(44) with the first term equal to zero. This
equation is hyperbolic fofw| <2 and elliptic in the other

case. In the first case, the solution is in the form of waves.

5.1. The numerical solution

The solution to Eq(42)can be obtained in a FEM context.

In the derivation that follows, we use the te¢nm place ofP,
andg¢” will be the conjugate op. We choosep oc exp (ko).
Applying the Galerkin method, we multipk42) by ¢" and
then integrate:
/ ¢ (0?V2p — 4V - kk - V¢)dV = 0 (45)
Q2

For the first term, we use the vectorial identity-
(#*Vo) = ¢*V2p + Vo* - VpandV - (¢p*kk - V§) = ¢*V -
kk - V¢ + Vo* - kk - V¢ for the second. Then:

/ (2 (V§* - V@) — AVP* - kk - V) dV
22

+ / (—?¢p*V + 4 kk - Vo) -7 dS =0 (46)
982

2wi / ¢*(k x Vo) - dS (47)
082

The next step is to rewrité46) in cylindrical coordinates.
Theng = €’ and the gradient af becomes:

(48)

The volume element is\d=r dr db dz. Eq. (48) can now be
written as:
A\ 2 W \?  k2w?
/ () Cm o (W) e
90 or 0z r

ax

+ 2k / F-A)y?di=0 (49)
300

where &~ =21 dr dz and d are the differentials of surface

and line elements, respectively. Writigign terms of a linear

combination of nodal valueg;, asy = vazf’lNiwi, the last

equation has the form of a nonlinear matrix equatiowin
(@?[A] + o[ B] + [CD{y} = O (50)

with Ajj, Bj andCj; given by:

ON; ON; ON; ON; k2
A;i = — —~2 4+ —N;N; | d¥ 51
i /Q<rar or Tz o TN (1)
Bj=2 [ F-AN;N;d (52)
e
ON; ON;
c,~,-=—4/r L Ldx (53)
Q dz 0z
The explicit forms of the matrices are:
2 A 2 11
Ay = r2K; + —rg 121 (54)
1 1 2
A A |P2 — Pq] 2 1
B;; = 2kf -A————— 55
ij 6 1 2 (55)
2,2 (rs — r2)? (r3—r2)(r1 —r3) (r3—ra)(r2 —r1)
Cij=— —= [(7‘3 —r2)(r1 —r3) (e —ra)? (r1—r3)(r2 — 7‘1)‘|
(r3=r2)(ra —r1) (r1—r3)(r2 —r1) (r2 — r1)?
(56)

Ki=2a

213232 + r13r32 z%l + r§1 221213 + 121113

2 2
1 [ 3T 13

213232+ r13r32 223212 + r23r12]

223212+ r23r12 221213+ 121113 z%z + rfz

(57)

whereA is the area of each triangle ang=(r1 +ra +r3)/3.
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In our problem, some points @f belong to the boundary [
of the domain and others are interior points. In a manner
similar to the computation of the modes of vibration of a
membrane, we can consider that some boundaries are fixet
and others free. If poiritbelongs to a boundary, wheteis
fixed, we will puty;; = 0. Then we can split the solution field
into two disjoint groupsy =y U ¢!, wherey represents
the collection of points wherg- =0, andy' the rest. The —

eigenvalue Eq(50) must be applied strictly to the' group /g /7
of points. y 4
The quadratic eigenvalue E(hO) can be solved as fol-
lows. Let{¢} =w{y}; then we can rewrit¢50) as the two .
following equations: \

[Alig} = w[Al(¥) (58)
and Fig. 10. Oscillation modes for a pressure field, (up) using a cylindrical and,
(below) using a modified cylindrical pipe. When the radius of cylinder shrink,
- the pressure distributions loss symmetry.
o[ Al{¢} + [Bl¢ + [Cl{y) (59)

Egs. (58) and (59), which are linear in» but with coupled — model, the apex region is a zone were some instabilities can
eigenvalues)’ and¢, can be written in a form of a linear  grow, This can explain, for example, the pulsating character

system: of the exit flow, when a hydrocyclone operates in a transition
regime between spray and roping.

0 [A] vl —w [a] 0 v/ ( Finally, several other modes of inertial oscillations can be

—[C] —[B]| | ¢ 0 [A]l] | ¢ induced by different types of motions. Precession and vibra-

_ ] ) tion have been observed at the free surface of the air-core in
This equation can be solved with the usual methods. industrial hydrocyclones.

We solved two cases. For simplicity, we consider only
the axisymmetric modek £ 0). The first case considers a
cylindrical pipe of 165cm in length and with internal and
external radii of 3mm and 13 cm, respectively. The second — _
case is again a cylindrical pipe, but with the external radii
varying from 13 cm at the top (height of 50 cm) to 6 cm at the
bottom.

We use the following boundary conditions. Fix the val-
ues of the pressure at the top and bottom of the cylinders to
zero, and let the boundaries at the radial walls be free. This
selection is based on the fact that at the internal radius, the
air-core is free to acquire any form at the interior because of
the negligible air resistance. The same effect is valid for the
external radius because here, the external fluid behaves as a
free vortex. hy

Fig. 10shows the results of both cases. In each row, the
geometry of the domain is shown first and then the first four
modes for the pressure field. It is interesting to compare this 5
behavior with that observed in the dispersion of the axial
velocities obtained with laser-Doppler anemometer in a con-

ical hydrocyclonelfig. 11b) [5]. The measurements showed ?ﬁ.
a greater dispersion of the axial velocity in the center com- w

pared to the upper and lower regions. This behavior can be
explained by the presence of vertical fluctuations of the axial
component of velocity.
The next observation is the abrupt oscillation observed
where the external radius changes in the case of the variable
cylinder compared to the behavior of the cylinder of con- Fig. 11. (a) Mean and (b) variance of the axial velocity component in a
stant external radius. As had been suggested by the hydrauli@onical hydrocyclone, obtained by LDA technique.
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6. Conclusions

Using some simple arguments, we have shown some im-
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