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The role of wave propagation in hydrocyclone operations II:
Wave propagation in the air–water interface of a conical hydrocyclone

E. Ovalle, F. Concha∗

Department of Metallurgical Engineering, University of Concepci´on, Concepci´on, Chile

Abstract

The air-core plays an important role in the operation of a conical hydrocyclone. In the apex, the air-core increases in diameter with the
possibility of reaching a size close to the apex diameter. In this case, roping may be induced. There is a range of values for the apex to
vortex ratio where roping is possible. Using some simple physical models, this work shows that perturbations propagating through the air-core
interface are amplified in the direction of the apex and may be responsible for the fluctuations of the underflow that are characteristic of roping.
© 2005 Published by Elsevier B.V.
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. Introduction

In previous work[10], we discussed the flow pattern in
conical hydrocyclone and obtained a numerical solution

f the Navier–Stokes equation by the finite element method
FEM). In the present work, we focus on the existence and
ropagation of wave motion inside a conical hydrocyclone.

From a practical point of view, the principal interests are
he efficiency of the classification process and in the oper-
tional stability of the hydrocyclone performance. The effi-
iency of classification is characterized by the sharpness of
he separation, which can be visualized by the shape of the
lassification curve. In a numerical hydrocyclone model, the
lassification curve may be obtained by introducing particles
n the flow field and following the trajectories. These tra-
ectories are sensitive to the perturbations introduced by the
nstabilities of flow, and the presence of turbulence. In the
resence of these phenomena, the classification curve is less
harp.

One feature that complicates the study of the flow in a
onical hydrocyclone, is the presence of an air-core[1,4,6].

degradation in the classification quality[9]. We think tha
perturbations induced by wave propagation in the flow
also influence the efficiency.

In this paper, the problem of generation and propaga
of waves in a hydrocyclone is addressed. Through a hydr
analogy, the study starts modelling the flow inside a con
hydrocyclone, where the centrifugal force is replaced
gravitational force. In this context, it is possible to study so
particular features of the flow such as the form adopted b
free surface, the propagation of superficial waves throug
air–water interface, and the effect of the waves on the o
tion of a conical hydrocyclone. Next, we propose a poss
mechanism for the generation of wave motions in a re
adjacent to the air-core of a hydrocyclone.

2. Form of the free surface

The form of the free surface observed in a laboratory
drocyclone is similar to that shown inFig. 7. The surfac
is horizontal and flat (cylindrical in the actual case) and
lectrical resistance tomography studies have shown that the
ir-core is not static[12], and some experimental observations
how that the instabilities of the air-core could produce a

formed in the outlet regions. As we will show, these defor-
mations are evidence for the existence of wave-like motions
in the region near to the air-core.

Consider, for example, the flow in a channel with a con-
stant depthH [11] (seeFig. 1), where the flow has an upstream
c ent
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onstant velocityU. If, in a certain region, a ramp is pres
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Fig. 1. Free-surface deformation in a channel.

in the formy=Y(x), the height of the free surface will change
from y=H to y(x) =H−d(x). The conservation of mass de-
mands that:

UH = u(x)[H − d(x) − Y (x)] (1)

On the other hand, momentum is conserved in the flow and
may be expressed by the Bernoulli equation over a free sur-
face streamline:1

1

2
U2 + gH + p

ρ
= 1

2
u2 + g(H − d) + p

ρ
(2)

Eliminatingu(x) from the above equations results in:

U2H2

(H − d − Y )2
= U2 + 2gd (3)

Sinced�H, the LHS of Eq.(3) can be expanded in a rapidly
convergent series. Truncating this series yields:

d(x) = Y (x)

F−2 − 1
(4)

whereF is the Froude number defined by:

F = U√
gH

(5)
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and the perturbations originated at the floor are reflected up-
stream, which are favorable conditions for the formation of
waves in the flow.

In a conical hydrocyclone, the flow has a tangential com-
ponent that is the same order of magnitude as the axial compo-
nent except at the outlet region where the axial component is
increased at the expense of the tangential component. There-
fore, based on the observations of the free surface in the adja-
cent outlet regions, we assume that,inside the hydrocyclone,
the flow is in a subcritical state and, as a consequence, this
condition is favorable for the existence of undulatorymotions
in the fluid.

3. The hydraulic model

The work of Escudier et al.[8], who used a hydraulic anal-
ogy to study the change between subcritical and supercritical
regimes of a swirly flow, inspired us to study the propaga-
tion of waves in the air-core of a hydrocyclone in a similar
manner. The hydraulic model of the hydrocyclone consists
of a launder with a ramp as shown inFig. 2. The water enters
through the bottom at the left side and overflows at the left
and right of the upper part of the model.

The model is a bi-dimensional, Cartesian representation
of a conical hydrocyclone geometry, as is shown inFig. 2. In
t ravi-
t d-
e ssed
i s
t n be
c r for-
m The
s tment
o

tion
∇

B

w ,
ρ l-
e nt,
he flow issubcriticalwhenF< 1 andsupercriticalwhen
> 1. In the first case,d(x) has the same sign asY(x) and

he free surface decreases its level downstream. The in
ccurs whenF> 1. This change of regime, associated w

he variation of the Froude number, determines how a
urbation is propagated through the flow. As is known in
hallow-water theory, the wave velocity of propagationc is
roportional to

√
gH . Therefore, the Froude number, w

en asF = U
c

, has a physical meaning similar to the Ma
umber in compressible flows. If the flow is supercritical,
elocity of the fluid is greater than the transmission of in
ation about a change in the floor level; thus, the perturb
pstream has no effect on the flow downstream. In the o
ite case, the information may advance faster than the

1 In the hydrocyclone case, a centrifugal forcemv2
r
r

must be considered
q.(2).
his representation, the centrifugal force is replaced by g
ational force,−ρg, in the vertical direction. The flow is mo
lled as inviscid and irrotational and the velocity is expre

n terms of a potential velocityv = ∇φ. This approach ha
he following advantages: the boundary conditions ca
hosen with a clear physical sense, in contrast with othe
ulations (for example, the stream-vorticity scheme).

econd reason for this formulation is because the trea
f the undulatory phenomena is more direct.

In the model, the flow obeys: the continuity equa
2φ = 0 and Bernoulli’s equation of motion:

(t) = ∂φ

∂t
+ 1

2
|∇φ|2 + gy + p

ρ
(6)

herep is the pressure field,B(t) an arbitrary function of time
the constant liquid density andg is the gravitational acce
ration. Since the potentialφ, is only unique up to a consta
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Fig. 2. Hydraulic analogy of a conical hydrocyclone.

Fig. 3. Simplified hydraulic model of a hydrocyclone.

we can takeB(t) ≡ 0. The last equation can be considered a
definition for the pressure field in the stationary case. It con-
tains two terms: a hydrostatic force,−gy, and the dynamical
component given by the velocity field12|∇φ|2.

The simplified hydraulic model is shown inFig. 3. The
domain of the problem is denoted byΩ and the boundaries
by Γ ={Γ 1 ∪Γ 2 ∪Γ 3 ∪Γ 4}, whereΓ 1 is an inlet region,
Γ 2 outlet regions,Γ 3 the walls andΓ 4 is the free surface.
In the model, we use Cartesian coordinates (x, y) and the
two-dimensional velocity will be given byv ≡ (u, v).

The problem can now be expressed in the following form:
over Ω, the Laplace equation∇2φ = 0 needs to be sat-
isfied. At Γ 1, the flow is fixed through the inlet velocity
vin = ∂φ/∂n, the normal component ofφ. At the outlet re-
gions, we fixed the values ofφ to arbitrary constant values
C1 andC2.2 Since the flow has no viscosity, we set the normal
component of the velocity field equal to zero at the walls. Fi-
nally, we impose a particular differential equation at the free
surfaceΓ 4, as will be shown.

At this free surface, it is necessary to impose two comple-
mentary conditions. Thekinematical conditionexpresses the
fact that the position of the free surface is coincident with the
border of the fluid, every time and everywhere. Experimental
observations have shown that if a fluid particle is located over
the free surface at a given time, it remains there forever. If the
interface position is described by a functiony=η(x, t), where
y e
p ssed

p n the
h sed to
r

mathematically byf(x, y, t) =y− η(x, t) = 0. This condition
can be rewritten in terms of a material derivative off as:

Df

Dt
≡ ∂f

∂t
+ ∇f · v = 0 (7)

whereu and v are the horizontal and vertical components
of v. From the definition off, the last expression adopts the
form:

∂η

∂t
+ ∂φ

∂x

∂η

∂x
− ∂φ

∂y
= 0 (8)

The second condition isdynamicaland considers the pres-
sure distribution over the free surface. If the properties of the
water–air interface are neglected,3 the pressure can be con-
sidered constant over the free surface, and its value fixed to
an arbitrary constant,φ0, in the Bernoulli Eq.(6). If η(x, t)
denotes the height of the free surface with respect to an ar-
bitrary level of referencey= 0, Bernoulli’s equation can be
rewritten for the free surface in terms of the deformation,η

as:

∂φ

∂t
+ 1

2
|∇φ|2 + gη = 0 (9)

where we have chosenp0 = 0 for convenience. The problem
can be set formally as follows: consider a domainΩ having
a free surface at the boundaryΓ 4. Then, inΩ, the velocity
p r
Γ u-
m eless,
t thod.
S rface,
w r-
f n
o
n

η

W
f i-
t rms
o ing
t . The

ical
a

is the position of a particle of fluid andη represents th
osition of the free surface, then the restriction is expre

2 The case,C1 �=C2, can be considered as an external gradient ofφ im-
osed on the main flow in the horizontal direction. In the real case, whe
ydrocyclone operate in a vertical position, these constants can be u
epresent the contribution of the gravity field in the vertical direction.
otential satisfies the Laplace equation∇2φ = 0 and, ove
, the two Eqs.(2) and(8). In the literature, a number of n
erical methods exist to solve these equations. Neverth

he problem can be solved using a simple iterative me
ince the pressure is the same at all points on the free su
e can choose a reference pointP1 there, and on the free su

ace, use the Bernoulli Eq.(6) to calculate the deformatio
n both sides ofP1. Then, for a neighboring pointP2, the
ew deformation,η2, is:

2 = η1 + 1

2g
(v2

1 − v2
2) (10)

ith this simple procedure, we can calculate theformof the
ree surface but not its absoluteposition. To obtain the pos
ion, we need to minimize a functional constructed in te
f the total mechanical energy of the flow, simply choos

he case when the total pressure drop is an extremum

3 We will not consider the effect of superficial stress, i.e., due to chem
dditives to the fluid.
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justification for using the method is that, in nature, physical
processes tend to utilize a minimum amount of energy.

We developed a FEM code in MATLAB to solve the equa-
tions of the hydraulic model and the commercial code (FLU-
ENT) to obtain the form of the free surface in a hydrocyclone.
In these simulations, we used cylindrical coordinates and the
problem was defined as axisymmetric. To obtain good re-
sults, it was necessary to use a simple RNG model in the first
steps and a second-order differential turbulence model after-
wards. A great advantage in using FLUENT in Unix was the
possibility to use a mesh generator (preFC) in an iterative
or batch mode that can be set through a series of commands
written in a text (Ascii) file. In this way, the deformation of
the free surface was calculated, correcting the form to obtain
an uniform pressure distribution. Example results doing the
previous calculation steps are shown inFig. 4.

Some authors have suggested that the form of the air-
core can be determined by some mechanical characteristics
of the free surface through a dynamical restriction[3,7]. They
say that ifTrr is the normal (radial) stress inside a fluid, the
radius of the air-core,rac, can be calculated by using the
Young–Laplace equation:

[Trr]r=rac = − σ

R
(11)

where [Trr ]r =R=Trr |water−Trr |air andσ is the liquid–air in-
t with
v n of
r

T

I
(
t

d

T cal-
c or a
c ions,
i sur-
f per-
t used
f tech-

nically is difficult by the evaluation of theα = ∂vr/∂r term.
However, this is technically difficult and the results are highly
variable. It is our opinion that despite the theoretical attrac-
tiveness and sophistication of the theory, its application in the
inverse sense (the calculation of the diameter from the known
pressure) is not necessarily valid. It can be concluded that the
form of the free surface is determined mainly by global prop-
erties of the geometry and flow and only in a minor extent by
local properties of the surface, such as the surface tension.

3.1. Waves

The second problem to consider is the propagation char-
acteristics of waves at the free surface. As was mentioned
before, the form of the free surface in the hydrocyclone sup-
ports the existence of wave-like motions in its interior. The
first task is to incorporate an expression for the normal com-
ponent of the velocity at the free surface in the kinematical
boundary condition.

The unit normaln of the free surfacef(x, y, t) = 0 is given
by the normalized gradient off:

n = ∇φ
|∇φ| =

∂f
∂x
i + ∂f

∂y
j√(

∂f
∂x

)2 +
(
∂f
∂y

)2
(14)

N f the
v

o

w s
t al di-
r e
s and
n f
w

s in fre
erface tension. The radial stresses in a viscous liquid
iscosityµ, can be estimated using a first-order expansio
in the form:

rr = −p+ 2µ
∂vr

∂r
(12)

f α represents the radial gradient of the radial velocityvr, Eq.
12) can be written asTrr =−p+ 2µα. From(11) and(12),
he diameter of the air-core is:

a = 2σ

"p− 2µα
(13)

his theory can be applied in an inverse sense. The
ulations show that using a simple hydraulic model
ommercial code to solve the full Navier–Stokes equat
t is possible obtain the right form and position of the free
ace, without any use of additional physicochemical pro
ies of the interface. The Young–Laplace equation can be
or calculate the pressure jump in the interface, although

Fig. 4. Variation
ow, it is possible to calculate the normal component o
elocity field in the direction ofn:

∂φ

∂n
= n · ∇φ =

u
∂f
∂x

+ v
∂f
∂y√(

∂f
∂x

)2 +
(
∂f
∂y

)2
= − ∂f

∂t√(
∂f
∂x

)2 +
(
∂f
∂y

)2

(15)

r in terms ofy andη:

∂φ

∂n
=

∂η
∂t√

1 +
(
∂η
∂x

)2
=

∂η
∂t√

1 + tan2(θ)
= ∂η

∂t
cos(θ) (16)

here we have replaced∂n/∂x by tan(θ) which represent
he slope of the surface element respect to the horizont
ection. Another form to obtain(16) is as follows: defin
and n as the unit vectors oriented in the tangential
ormal direction relative to the free surface. In terms oθ,
e haves= cos(θ)i + sin(θ)j andn=−sin(θ)i + cos(θ)j . Then,

e surface height.
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(∂φ/∂n) = n · ∇φ = − sin(θ)(∂φ/∂x) + cos(θ)(∂φ/∂y). By
(8), (∂η/∂t) + (∂φ/∂x) tan(θ) − (∂φ/∂y) = 0. From the two
last expressions, we have (∂φ/∂n) = (∂η/∂t) cos(θ).

Now, we can linearize the kinematical and dynamical con-
ditions if we neglect the terms proportional to|∇φ|2 and
∂ψ
∂x

∂η
∂x

. Then, Eqs.(8) and(9), are replaced by:

∂φ

∂t
+ gη = 0 (17)

∂η

∂t
− ∂φ

∂y
= 0 (18)

Now, we can combine the above equations to obtain a hyper-
bolic differential equation having the form of a wave equa-
tion:

∂2φ

∂t2
+ g

∂φ

∂n

√
1 + tan2(θ) = 0 (19)

If θ is small, then tan(θ) ≈ 0 and∂φ/∂n ≈ ∂φ/∂y. Further-
more, if we impose a periodic perturbationφ(x, y, t) =φ0(x,
y) eiωt over the free surface, we obtain the following equation
for φ:

∂φ

∂n
= ω2

g
φ (20)

Eq. (20) is a Robin boundary condition. When it is applied
o ce
a on
∇

nary
w ,
t

a

c -

ferential equation forf(x) has the form of an harmonic oscil-
lator, wherek represents the spatial frequencyk= 2π/λ for a
given wavelengthλ. Then,f(x) can be expressed in terms of
the sinusoidal functionA · sin(kx+ α), with α being a phase
constant. In a similar form,g(y) can be expressed in terms of
the hyperbolic equationAeky+Be−ky. If Ω is bounded in the
vertical direction by the floor placed aty=−h(x) (seeFig. 5),
and the reference free surface is iny= 0, theng(y) adopts
the form cosh[k(y+h)]. The more general solution is given
by:

φ(x, y, t) = 2Ae−kh sin(kx+ α) cosh(k(y + h)) eiωt (22)

But φ needs to satisfied(20), which fixes a relation be-
tween the temporal behavior, given byω(t), and the spatial
behavior, given byk(x), in the form of adispersion relation:

ω(k) =
√
g · k · tanh(kh) (23)

The physical amplitudeη of the oscillation can be obtained
from the relation∂φ/∂y = ∂η/∂t given by Eq.(16)for θ� 1.
If we integrate∂φ/∂y with respect to the time, and then re-
place the imaginary factor−i by e−i(π/2), we obtain the so-
lution for η(x, y, t):

η(x, y, t) = 2A
k

ω
e−kh−i(π/2) sinh(k(y + h)) ei(kx−ωt) (24)

I i(kx−ωt)
b

η

F tion
o free
s e do-
m note
t as in
t

row
i e case

Free s
ver the free surfaceΓ 4, the dynamics of the free surfa
re transmitted to the interiorΩ, where the Laplace equati
2φ = 0 is satisfied.
For a better illustration, consider the case of statio

aves in the formφ(x, y, t) = f(x)g(y) eiωt. For this selection
he Laplace equation imposes:

f ′′

f
+ g′′

g
= 0 (21)

t each point inΩ.
This equation is satisfied only iff ′′/f = −g′′/g =

onstant. If the constant is negative, say−k2, then the dif

Fig. 5.
n the case of travelling waves, e.g.,φ(x, y, t) =φ0(y) e ,
y a similar procedure, we obtain the solution:

(x, y, t) = 2A
k

ω
e−kh sinh(k(y + h)) cos(kx− ωt) (25)

ig. 6shows some isobaric lines resulting from a calcula
f the temporal evolution of the waves imposed over the
urface. The superficial waves are propagated inside th
ain and their amplitude decreases. It is interesting to

he jumps observed where the depth changes abruptly,
he neighborhood of the vortex finder region.

In certain conditions, the amplitude of the wave can g
n regions where the depth is decreasing, as is seen in th

urface.
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Fig. 6. Isobaric lines in the hydraulic model. In the upper figure, a temporal evolution (in vertical axis) of the free surface is shown.

of tsunamis or in the hydrocyclone apex. We suggest that in a
real hydrocyclone, the intermittent suppression of flow at the
apex can be due in part to the propagation and amplification
of waves through the air-core.

4. Some measurements on the hydraulic model

We were interested in validating the representation of hy-
drocyclone physics by a simple two-dimensional hydraulic
model. Toward this end, we constructed a physical model
in the laboratory using translucent perspex. The experimen-
tal setup is shown inFig. 7. The size of the model was
90 cm× 11 cm× 2 cm. Water was fed through a pipe con-
nected at the bottom of the vortex zone. At both outlets (left:
overflow, and right: underflow), the flow rate was measured.
Making measurements of the water heights and calculat-
ing the mean velocity at the outlet regions, it was possible
to estimate the total pressure drop in the equipment. If a
pressure–flow curve is constructed, it obeys a relationship in
the formQ∼P1/2, similar to the behavior of a real hydrocy-
clone. Furthermore, when the equipment is fed with different
feed rates, different forms of free surface were obtained, but
all showed characteristics similar to those observed in the nu-
merical simulation of a real hydrocyclone. The flow showed
a prominence at the central region and a depletion of the free

surface at the outlet regions. With these arguments, we con-
clude that the hydraulic model can represent the principal
physical features of a real hydrocyclone.

A problem that is difficult to visualize in a real hydrocy-
clone is the influence of the wave motion when the regime
changes from spray to roping at the underflow zone of an con-
ical hydrocyclone. There is experimental evidence[2] that the
flow regimes at the apex region depend on the ratio of apex
and vortex diametersDu/Do. WhenDu/Do< 0.35, the regime
is always roping, and ifDu/Do> 0.5, the regime is always
spray. At intermediate values between 0.35 and 0.5, the be-
havior cannot be predicted by diameter ratio alone.

Using the hydraulic model as a physical analogy, we con-
structed a functional dependence between the ratiosQu/Qo
andDu/Do, using the virtual radiiDo andDu shown inFig. 7
(distance between the free surface level and a reference and
arbitrary label equivalent to the symmetry axis in a real hy-
drocyclone). The result is shown inTable 1. We observe that
the underflow is suppressed forDu/Do between 0.42 and 0.3.
If we induce a wave-like motion in the hydraulic model, for
example, with the feed flow in a pulsating form, we obtain the
response indicated by the symbol (*) inTable 1, suppressing
the underflow at an earlierDu/Do.

To confirm our conclusions, we obtained a numerical so-
lution for the hydrocyclone working only with water, using
the commercial package FLUENT with a structured grid. The

l setup
Fig. 7. Experimenta
 of the hydraulic model.
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Table 1
ExperimentalQu/Qo = f (Du/Do) relation

Du/Do Qu/Qo Q∗
u/Q

∗
o

0.1750 0.000 0.000
0.2750 0.044 0.000
0.5750 0.349 0.183
0.7625 0.850 0.589
1.0000 2.404 2.404

meshes are shown inFig. 8. For a given geometry, we do not
know a priori the form of the free surface and the split ra-
tio. The form and position of free surface are found (as was
discussed before) and, for each case, we calculated a set of
different values of split ratio. Finally, we chose the config-
uration that produced the minimum amount of mechanical
energy.

To be strict, we need to compare the static solution ob-
tained with a fixed free surface, with a time-dependent solu-
tion that considers the fluctuation of the free surface in time.
In our case, however, we compared two static cases, one with
and without free surface deformation. In both cases, we ob-
tained the same result as is shown inTable 2. The behavior
is similar to the measurements on the hydraulic model. For
small ratios ofDu/Do, there is a limit when the underflow
disappears. In the intermediate case, given a ratioDu/Do, the
underflow is less when there are wave-like movements at the
free surface. This means that when there are oscillations, the

Table 2
NumericalQu/Qo = f(Du/Do) relation

Du/Do Qu/Qo Q∗
u/Q

∗
o

0.3077 0.000 0.000
0.4211 0.122 0.111
0.6154 0.289 0.289

transition between spray and roping occurs at lesser values
of Du/Do. In other words, oscillations in discharge cause an
increase in the probability of the transition from spray to rop-
ing.

5. A proposal for the origin of the waves

In this section, we explore a possible mechanism for the
generation of wave-like motions in the region adjacent to the
air-core in a conical hydrocyclone. The predominant force in
a swirling flow is the centrifugal force. This assumes the role
of a restoration force when a disturbance alters the stream-
lines and (as in the case of a perturbation over a tank) can, in
some circumstances, manifest itself through wave-like mo-
tion. Since this kind of force appears with a change of refer-
ence frame, it is an inertial force.

In a conical hydrocyclone, the tangential velocity has the
form of a forced vortex in the inner region and a free vortex
in the outer region. At the inner region, the rotation is similar
Fig. 8. Meshes used in FLU
ENT on a hydrocyclone.



220 E. Ovalle, F. Concha / Chemical Engineering Journal 111 (2005) 213–223

to that of a rigid body (Taylor–Proudman theorem), and the
fluid acquires some elastic properties that can sustain waves.

Our attention will be focused on the annular section sur-
rounding the air-core, as is shown inFig. 9. Assume that the
fluid is rotating with a constant angular velocity� around
thez-axis. If the equations of motion are expressed in a refer-
ence frame rotating with the fluid, we have the two following
equations:

∇ · v = 0 (26)

and

∂v
∂t

+ 1

2
∇v2 + (∇ × v) × v+ 2� × v+ � × (� × r )

= −1

ρ
∇P − ν∇ × (∇ × v) + F (27)

whereρ(∇ × v) × v is the centrifugal force,2ρ� × v is the
Coriolis force andF is the external force. IfF is conservative,
it can be written in terms of an arbitrary potential function
0, and in the case of a gravitational force, we haveF =
−∇(gz). Grouping all gradients in one term and defining the
newpressure pin the form:

p = P + ρgz− 1

2
ρ(� × r ) · (� × r ) (28)

E

I n-
g of
t can
b in

terms of the dimensionless variablesr∗ = r
L
, t∗ = t3, v∗ =

v
U
, p∗ = p

ρΩUL
and∇∗ = L∇. The continuity equation does

not change in form, but the momentum equation changes to:

∂v∗

∂t∗
+ R0(v∗ · ∇∗)v∗ + 2k̂ × v∗

= −∇∗p∗ − Ek∇∗ × (∇∗ × v∗) (30)

whereR0 is the Rossby number andEk is the Ekman number
defined by:

R0 =
∣∣∣∣ρ(v · ∇)v
2ρ� × v

∣∣∣∣ = ρUL−1U

ρΩU
= U

ΩL
(31)

Ek =
∣∣∣∣ µ∇2v
2ρ� × v

∣∣∣∣ = µL−2U

ρΩU
= ν

ΩL2 (32)

These numbers quantify the relative importance of the con-
vective and viscous terms with respect to the Coriolis force.
If we assume zero viscosity, the Ekman number is zero. Fur-
thermore, if the velocityU of a perturbation is much smaller
than the rotational velocity of the fluid, the Rossby number
is also small. These cases are applicable to the hydrocyclone
of course. In the limit case whereR0 = 0, the pressure force is
balanced by the Coriolis force. The flow is termed geostrophic
(in the future, we will drop the * in the dimensionless vari-
ables):
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q.(27)adopts the form:

∂v
∂t

+(v · ∇)v+2� × v= − 1

ρ
∇p− ν∇ × (∇ × v) (29)

f L, Ω and U are characteristics dimensions of lo
itude, angular velocity and velocity, the importance

he centrifugal and Coriolis forces in a hydrocyclone
e estimated if the momentum equation is written

Fig. 9. Zone for generation of inertial waves in the hydrocyclon.
k̂ × v = −∇p (33)

n this case, the movement is induced by a pressure field
endicular to the path of the fluid particles, which is sim

o that observed in atmospheric tornados. Applying the
o (33) results in:

ˆ · ∇v = 0 (34)

here we used the vectorial identity∇ × (k̂ × v) = k̂∇ · v−
ˆ · ∇v. This result shows that the gradient of the velo
eld does not change in the direction of the rotation a
nd the flow becomes rigid in thêk direction of the rotatio
Taylor–Proudman theorem). In particular, if a perturba
s induced in some place, it will propagate axially through
igid column surrounding the air-core. In the nonstation
ase withEk=R0 = 0, the linear equation:

∂v
∂t

+ 2k̂ × v = −∇p (35)

as a solution of the form:

(x, t) = V(x) eiωt (36)

(x, t) = P(x) eiωt (37)

hereω is the angular frequency of a perturbation impo
n the flow. The equations of motion are now:

· V = 0 (38)

ωV + 2k̂ × V = −∇P (39)
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The last equation couples the velocity and pressure fields. It
is convenient to express both equations in terms of only the
pressure variable. Applying the curl to Eq.(39), and using the
vectorial identity∇ × (A × B) = B · ∇A − A · ∇B+ A∇ ·
B− B∇ · A, we obtain:

∇ × V = −2i

ω
k̂ · ∇V (40)

If we apply thek component of the gradient (k̂ · ∇) to (39)
equation, we have:

k̂ · ∇V = i

ω
k̂ · ∇∇P (41)

Combining Eqs.(40) and(41) and taking the divergence of
(39), we obtain the Poincare equation:

∇2P − 4

ω2 (k̂ · ∇)
2
P = 0 (42)

Now, it is necessary to convert the boundary conditionV ·
n = 0 into an equation in terms ofP. Projecting(39) on the
vectorn× k̂, and using the vectorial identity (a× b) · (c×
d) = (a · c)(b · d) − (a · d)(b · c), we have:

(iω(k̂ × V) − 2V) · n+ 2i

ω
n · k̂k̂ · ∇P = −(n× k̂) · ∇P

(43)

a

i

T s
o is
e r
c s.

5

xt.
I
a
A
t∫

(
k∫

Using Eq.(44)as a boundary condition, the term in the surface
integral can be transformed to:

2ωi
∫
∂Ω

φ∗(k̂ × ∇φ) · n̂dS (47)

The next step is to rewrite(46) in cylindrical coordinates.
Thenφ =ψ eikθ and the gradient ofφ becomes:

∇φ =
(
∂ψ

∂r
r̂ + ik

r
ψθ̂ + ∂ψ

∂z
k̂

)
eikθ (48)

The volume element is dV= r dr dθ dz. Eq. (48) can now be
written as:∫
∂Ω

[
ω2r

(
∂ψ

∂r

)2

− (4 − ω2)r

(
∂ψ

∂z

)2

+ k2ω2

r
ψ2

]
dΣ

+ 2kω
∫
∂∂Ω

(r̂ · n̂)ψ2 dl = 0 (49)

where dΣ = 2πr dr dz and dl are the differentials of surface
and line elements, respectively. Writingψ in terms of a linear
combination of nodal valuesψi , asψ = ∑Np

i=1Niψi, the last
equation has the form of a nonlinear matrix equation inω:

(ω2[A] + ω[B] + [C]){ψ} = 0 (50)

with Aij , Bij andCij given by:

A

B

C

T

A

B

C

K

w

nd replacinĝk × V from (39) in (43), we obtain:

ω2
(
ω − 4

ω

)
V · n = ω2n · ∇P − 4(n · k̂)(k̂ · ∇P)

− 2iω(k̂ · n) · ∇P (44)

hen, the boundary conditionV · n = 0 expressed in term
f P is given by(44) with the first term equal to zero. Th
quation is hyperbolic for|ω| ≤ 2 and elliptic in the othe
ase. In the first case, the solution is in the form of wave

.1. The numerical solution

The solution to Eq.(42)can be obtained in a FEM conte
n the derivation that follows, we use the termφ in place ofP,
ndφ* will be the conjugate ofφ. We chooseφ∝ exp (ikθ).
pplying the Galerkin method, we multiply(42) by φ* and

hen integrate:

Ω

φ∗(ω2∇2φ − 4∇ · k̂k̂ · ∇φ) dV = 0 (45)

For the first term, we use the vectorial identity∇ ·
φ∗∇φ) = φ∗∇2φ + ∇φ∗ · ∇φ and∇ · (φ∗k̂k̂ · ∇φ) =φ∗∇ ·
ˆ k̂ · ∇φ + ∇φ∗ · k̂k̂ · ∇φ for the second. Then:

Ω

(ω2(∇φ∗ · ∇φ) − 4∇φ∗ · k̂k̂ · ∇φ) dV

+
∫
∂Ω

(−ω2φ∗∇φ + 4φ∗k̂k̂ · ∇φ) · n̂dS = 0 (46)
ij =
∫
Ω

(
r
∂Ni

∂r

∂Nj

∂r
+ r

∂Ni

∂z

∂Nj

∂z
+ k2

r
NiNj

)
dΣ (51)

ij = 2k
∫
∂Ω

r̂ · n̂NiNj dl (52)

ij = −4
∫
Ω

r
∂Ni

∂z

∂Nj

∂z
dΣ (53)

he explicit forms of the matrices are:

ij = r2cKij + k2rc∆

6




2 1 1

1 2 1

1 1 2


 (54)

ij = 2kr̂ · n̂ |P2 − P1|
6

[
2 1

1 2

]
(55)

ij = −2r2c
A

[
(r3 − r2)2 (r3 − r2)(r1 − r3) (r3 − r2)(r2 − r1)

(r3 − r2)(r1 − r3) (r1 − r3)2 (r1 − r3)(r2 − r1)

(r3 − r2)(r2 − r1) (r1 − r3)(r2 − r1) (r2 − r1)2

]

(56)

ij = 1

2∆


 z2

23 + r223 z13z32 + r13r32 z23z12 + r23r12

z13z32 + r13r32 z2
31 + r231 z21z13 + r21r13

z23z12 + r23r12 z21z13 + r21r13 z2
12 + r212




(57)

here∆ is the area of each triangle andrc= (r1 + r2 + r3)/3.
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In our problem, some points ofψ belong to the boundary
of the domain and others are interior points. In a manner
similar to the computation of the modes of vibration of a
membrane, we can consider that some boundaries are fixed
and others free. If pointi belongs to a boundary, whereψ is
fixed, we will putψi = 0. Then we can split the solution fieldψ
into two disjoint groups:ψ =ψ0 ∪ψf, whereψ0 represents
the collection of points whereψ = 0, andψf the rest. The
eigenvalue Eq.(50) must be applied strictly to theψf group
of points.

The quadratic eigenvalue Eq.(50) can be solved as fol-
lows. Let{φ}=ω{ψf}; then we can rewrite(50) as the two
following equations:

[A]{φ} = ω[A]{ψf } (58)

and

ω[A]{φ} + [B]φ + [C]{ψf } (59)

Eqs.(58) and(59), which are linear inω but with coupled
eigenvaluesψf andφ, can be written in a form of a linear
system:[

0 [A]

−[C] −[B]

] {
ψf

φ

}
= ω

[
[A] 0

0 [A]

] {
ψf

φ

}
(60)
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Fig. 10. Oscillation modes for a pressure field, (up) using a cylindrical and,
(below) using a modified cylindrical pipe. When the radius of cylinder shrink,
the pressure distributions loss symmetry.

model, the apex region is a zone were some instabilities can
grow. This can explain, for example, the pulsating character
of the exit flow, when a hydrocyclone operates in a transition
regime between spray and roping.

Finally, several other modes of inertial oscillations can be
induced by different types of motions. Precession and vibra-
tion have been observed at the free surface of the air-core in
industrial hydrocyclones.

Fig. 11. (a) Mean and (b) variance of the axial velocity component in a
conical hydrocyclone, obtained by LDA technique.
his equation can be solved with the usual methods.
We solved two cases. For simplicity, we consider o

he axisymmetric modes (k= 0). The first case considers
ylindrical pipe of 165 cm in length and with internal a
xternal radii of 3 mm and 13 cm, respectively. The sec
ase is again a cylindrical pipe, but with the external r
arying from 13 cm at the top (height of 50 cm) to 6 cm at
ottom.

We use the following boundary conditions. Fix the v
es of the pressure at the top and bottom of the cylinde
ero, and let the boundaries at the radial walls be free.
election is based on the fact that at the internal radius
ir-core is free to acquire any form at the interior becaus

he negligible air resistance. The same effect is valid fo
xternal radius because here, the external fluid behave
ree vortex.

Fig. 10shows the results of both cases. In each row
eometry of the domain is shown first and then the first
odes for the pressure field. It is interesting to compare
ehavior with that observed in the dispersion of the a
elocities obtained with laser-Doppler anemometer in a
cal hydrocyclone (Fig. 11b) [5]. The measurements show

greater dispersion of the axial velocity in the center c
ared to the upper and lower regions. This behavior ca
xplained by the presence of vertical fluctuations of the
omponent of velocity.

The next observation is the abrupt oscillation obse
here the external radius changes in the case of the va
ylinder compared to the behavior of the cylinder of c
tant external radius. As had been suggested by the hyd
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6. Conclusions

Using some simple arguments, we have shown some im-
portant features of the dynamics of a conical hydrocyclone.

(1) We have shown that the form of the free surface depends
mainly on the global geometrical characteristics of the
flow and possibly, to a minor extent, on physicochemical
properties of the free surface.

(2) We have shown that the air-core plays an important role in
the phenomenon of roping, as is suggested by the pulsat-
ing character that is observed in the underflow, when the
regime changes from spray to roping. This phenomenon
may be induced by the loss of stability in a region near the
apex. Then, on average, the air-core increases in diameter
with the possibility of reaching a size close to the apex
diameter. In such a case, roping may be induced. This ef-
fect is enhanced by the presence of oscillations in the free
surface, which increase in amplitude close to the apex.

(3) The oscillations can be forced by several physical rea-
sons, for example, by pressure fluctuations introduced
into the hydrocyclone through the feed. In this work, we
suggest that a relevant physical source of oscillations
is by the generation and propagation of inertial waves
induced in the neighborhood of the air-core, where
the tangential velocity behaves as a rigid body. The
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